:py:mod:`rhino_health.lib.metrics.base_metric` ============================================== .. py:module:: rhino_health.lib.metrics.base_metric Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: rhino_health.lib.metrics.base_metric.DataFilter rhino_health.lib.metrics.base_metric.GroupingData rhino_health.lib.metrics.base_metric.MetricResponse rhino_health.lib.metrics.base_metric.KaplanMeierMetricResponse rhino_health.lib.metrics.base_metric.BaseMetric rhino_health.lib.metrics.base_metric.JoinMode Attributes ~~~~~~~~~~ .. autoapisummary:: rhino_health.lib.metrics.base_metric.MetricResultDataType .. py:class:: DataFilter(/, **data: Any) Bases: :py:obj:`pydantic.BaseModel` A filter to be applied on the entire Dataset .. !! processed by numpydoc !! .. py:attribute:: filter_column :type: str The column in the remote dataset df to check against .. !! processed by numpydoc !! .. py:attribute:: filter_value :type: Union[Any, rhino_health.lib.metrics.filter_variable.FilterBetweenRange] The value to match against or a FilterBetweenRange if filter_type is FilterType.BETWEEN .. !! processed by numpydoc !! .. py:attribute:: filter_type :type: Optional[rhino_health.lib.metrics.filter_variable.FilterType] The type of filtering to perform. Defaults to FilterType.EQUAL .. !! processed by numpydoc !! .. py:attribute:: filter_dataset :type: Optional[str] The dataset to perform the filter on if there are multiple datasets for Federated Join. If unspecified will be all datasets .. !! processed by numpydoc !! .. py:class:: GroupingData(/, **data: Any) Bases: :py:obj:`pydantic.BaseModel` Configuration for grouping metric results .. seealso:: :obj:`pandas.groupby` Implementation used for grouping. `See documentation `_ .. !! processed by numpydoc !! .. py:attribute:: groupings :type: List[str] :value: [] A list of columns to group metric results by .. !! processed by numpydoc !! .. py:attribute:: dropna :type: Optional[bool] :value: True Should na values be dropped if in a grouping key .. !! processed by numpydoc !! .. py:data:: MetricResultDataType Dict[str, Any] .. !! processed by numpydoc !! .. py:class:: MetricResponse(**data) Bases: :py:obj:`pydantic.BaseModel` Standardized response from querying metrics against a Dataset .. !! processed by numpydoc !! .. py:attribute:: output :type: MetricResultDataType .. py:attribute:: metric_configuration_dict :type: Optional[Dict[str, Any]] .. py:attribute:: dataset_uids :type: Optional[List[str]] .. py:attribute:: session :type: Any .. py:class:: KaplanMeierMetricResponse(**data) Bases: :py:obj:`MetricResponse` Standardized response from querying metrics against a Dataset .. !! processed by numpydoc !! .. py:attribute:: time_variable :type: str .. py:attribute:: event_variable :type: str .. py:method:: surv_func_right_model(group=None) Creates a survival function model for the metric response .. !! processed by numpydoc !! .. py:class:: BaseMetric(/, **data: Any) Bases: :py:obj:`pydantic.BaseModel` Parameters available for every metric .. !! processed by numpydoc !! .. py:property:: metric_response .. py:attribute:: data_filters :type: Optional[List[DataFilter]] :value: [] .. py:attribute:: group_by :type: Optional[GroupingData] .. py:attribute:: timeout_seconds :type: Optional[float] :value: 600.0 .. py:attribute:: count_variable_name :type: str :value: 'variable' .. py:method:: data() .. py:class:: JoinMode Bases: :py:obj:`str`, :py:obj:`enum.Enum` The mode we are performing the FederatedJoin .. !! processed by numpydoc !! .. py:attribute:: INTERSECTION :value: 'intersection' Return values where the identifiers are found in both the filter and query datasets. .. !! processed by numpydoc !! .. py:attribute:: UNION :value: 'union' Returns values where rows with the same identifiers are deduplicated. .. !! processed by numpydoc !!