rhino_health.lib.endpoints.dataset.dataset_dataclass#
Module Contents#
Classes#
| Input arguments for adding a new Dataset | |
- class rhino_health.lib.endpoints.dataset.dataset_dataclass.DatasetCreateInput(**data)#
- Bases: - BaseDataset- Input arguments for adding a new Dataset - csv_filesystem_location: str | None#
- The location the Dataset data is located on-prem. The file should be a CSV. 
 - method: typing_extensions.Literal[DICOM, filesystem] = 'filesystem'#
- What source are we importing imaging data from. Either a DICOM server, or the local file system 
 - is_data_deidentified: bool | None = False#
- Is the data already deidentified? 
 - image_dicom_server: str | None#
- The DICOM Server URL to import DICOM images from 
 - image_filesystem_location: str | None#
- The on-prem Location to import DICOM images from 
 - file_base_path: str | None#
- The location of non DICOM files listed in the dataset data CSV on-prem 
 - sync: bool | None = True#
- Should we perform this import request synchronously. 
 - name: str#
- The name of the Dataset 
 - description: str#
- The description of the Dataset 
 - base_version_uid: str | None#
- The original Dataset this Dataset is a new version of, if applicable 
 - project_uid: typing_extensions.Annotated[str, Field(alias='project')]#
- The unique ID of the Project this Dataset belongs to. 
 - workgroup_uid: typing_extensions.Annotated[str, Field(alias='workgroup')]#
- The unique ID of the Workgroup this Dataset belongs to .. warning workgroup_uid may change to primary_workgroup_uid in the future 
 - data_schema_uid: typing_extensions.Annotated[Any, Field(alias='data_schema')]#
- The unique ID of the DataSchema this Dataset follows 
 - import_args()#
 
- class rhino_health.lib.endpoints.dataset.dataset_dataclass.Dataset(**data)#
- property primary_workgroup#
 - property dataset_info#
- Sanitized metadata information about the Dataset. 
 - property data_schema: DataSchema#
- Return the DataSchema Dataclass associated with data_schema_uid - Warning - The result of this function is cached. Be careful calling this function after making changes. All dataclasses must already exist on the platform before making this call. - Returns:
- data_schema: DataSchema
- Dataclass representing the DataSchema 
 
 
 - property project: Project#
- Return the Project Dataclass associated with project_uid - Warning - The result of this function is cached. Be careful calling this function after making changes. All dataclasses must already exist on the platform before making this call. - Returns:
- project: Project
- Dataclass representing the Project 
 
 
 - property workgroup: Workgroup#
- Return the Workgroup Dataclass associated with workgroup_uid - Warning - The result of this function is cached. Be careful calling this function after making changes. All dataclasses must already exist on the platform before making this call. - Returns:
- workgroup: Workgroup
- Dataclass representing the Workgroup 
 
 
 - property creator: User#
- Return the User Dataclass associated with creator_uid - Warning - The result of this function is cached. Be careful calling this function after making changes. All dataclasses must already exist on the platform before making this call. - Returns:
- creator: User
- Dataclass representing the User 
 
 
 - uid: str#
- The unique ID of the Dataset 
 - version: int | None = 0#
- Which revision this Dataset is 
 - num_cases: int#
- The number of cases in the Dataset 
 - import_status: str#
- The import status of the Dataset 
 - data_schema_uid: str#
 - name: str#
- The name of the Dataset 
 - description: str#
- The description of the Dataset 
 - base_version_uid: str | None#
- The original Dataset this Dataset is a new version of, if applicable 
 - creator_uid: str#
- The UID of the creator of this dataclass on the system 
 - created_at: str#
- When this dataclass was created on the system 
 - data_schema_name: str#
- The data_schema name 
 - project_name: str#
- The project name 
 - workgroup_name: str#
- The workgroup name 
 - creator_name: str#
- The creator name 
 - run_code(run_code, print_progress=True, **kwargs)#
- Create and run code on this dataset using defaults that can be overridden - Warning - This function relies on a dataset’s metadata so make sure to create the input dataset first - Warning - This feature is under development and the interface may change - run_code: str
- The code that will run in the container 
- print_progress: bool = True
- Whether to print how long has elapsed since the start of the wait 
- name: Optional[str] = “{dataset.name} (v.{dataset.version}) containerless code”
- Model name - Uses the dataset name and version as part of the default (eg: when using a the first version of dataset named dataset_one the name will be dataset_one (v.1) containerless code) 
- description: Optional[str] = “Python code run”
- Model description 
- container_image_uri: Optional[str] = {ENV_URL}/rhino-gc-workgroup-rhino-health:generic-python-runner”
- Uri to container that should be run - ENV_URL is the environment ecr repo url 
- input_data_schema_uid: Optional[str] = dataset.data_schema_uid
- The data_schema used for the input dataset - By default uses the data_schema used to import the dataset 
- output_data_schema_uid: Optional[str] = None (Auto generate data schema)
- The data_schema used for the output dataset - By default generates a schema from the dataset_csv 
- output_dataset_names_suffix: Optional[str] = “containerless code”
- String that will be added to output dataset name 
- timeout_seconds: Optional[int] = 600
- Amount of time before timeout in seconds 
 - Returns:
- Tuple: (output_datasets, code_run)
- output_datasets: List of Dataset Dataclasses code_run: A CodeRun object containing the run outcome 
 
 - Examples - dataset.run_code(run_code = <df[‘BMI’] = df.Weight / (df.Height ** 2)>) 
 - get_metric(metric_configuration: rhino_health.lib.metrics.base_metric.BaseMetric)#
- Queries on-prem and returns the result based on the METRIC_CONFIGURATION for this Dataset. - See also