rhino_health.lib.metrics.base_metric
#
Module Contents#
Classes#
A filter to be applied on the entire Dataset |
|
Configuration for grouping metric results |
|
Standardized response from querying metrics against a Dataset |
|
Standardized response from querying metrics against a Dataset |
|
Parameters available for every metric |
|
The mode we are performing the FederatedJoin |
Attributes#
Dict[str, Any] |
- class rhino_health.lib.metrics.base_metric.DataFilter(**data: Any)#
Bases:
pydantic.BaseModel
A filter to be applied on the entire Dataset
- filter_column: str#
The column in the remote dataset df to check against
- filter_value: Any | rhino_health.lib.metrics.filter_variable.FilterBetweenRange#
The value to match against or a FilterBetweenRange if filter_type is FilterType.BETWEEN
- filter_type: rhino_health.lib.metrics.filter_variable.FilterType | None#
The type of filtering to perform. Defaults to FilterType.EQUAL
- filter_dataset: str | None#
The dataset to perform the filter on if there are multiple datasets for Federated Join. If unspecified will be all datasets
- class rhino_health.lib.metrics.base_metric.GroupingData(**data: Any)#
Bases:
pydantic.BaseModel
Configuration for grouping metric results
See also
pandas.groupby
Implementation used for grouping. See documentation
- groupings: List[str] = []#
A list of columns to group metric results by
- dropna: bool | None = True#
Should na values be dropped if in a grouping key
- rhino_health.lib.metrics.base_metric.MetricResultDataType#
Dict[str, Any]
- class rhino_health.lib.metrics.base_metric.MetricResponse(**data)#
Bases:
pydantic.BaseModel
Standardized response from querying metrics against a Dataset
- output: MetricResultDataType#
- metric_configuration_dict: Dict[str, Any] | None#
- dataset_uids: List[str] | None#
- session: Any#
- class rhino_health.lib.metrics.base_metric.KaplanMeierMetricResponse(**data)#
Bases:
MetricResponse
Standardized response from querying metrics against a Dataset
- time_variable: str#
- event_variable: str#
- surv_func_right_model(group=None)#
Creates a survival function model for the metric response
- class rhino_health.lib.metrics.base_metric.BaseMetric(**data: Any)#
Bases:
pydantic.BaseModel
Parameters available for every metric
- property metric_response#
- data_filters: List[DataFilter] | None = []#
- group_by: GroupingData | None#
- timeout_seconds: float | None = 600.0#
- count_variable_name: str = 'variable'#
- data()#
- class rhino_health.lib.metrics.base_metric.JoinMode#
Bases:
str
,enum.Enum
The mode we are performing the FederatedJoin
- INTERSECTION = 'intersection'#
Return values where the identifiers are found in both the filter and query datasets.
- UNION = 'union'#
Returns values where rows with the same identifiers are deduplicated.